The generator matrix

 1  0  0  1  1  1  1  1  1  3  1  1 X+3  1  X 2X+3  1  1  1  1  6  1  1  1  1  1  1  1  1  1  6 2X+3 2X  1  1  1  1  1  1 X+3  1  1  1  0  1 2X+3 2X+6  1  1 X+3  1  1 2X  1  1  1  1  1  1  1 2X  1 X+6 X+6  1  1  1  1  3 X+3  1  1  1  6  1  1 2X  1 2X 2X+6  1  X  1  1
 0  1  0  3  1  4  2  X  8  1 2X+4 2X+2  1 X+3  1 2X+6  6 X+6  2 2X+7 2X+6 2X X+2 X+8 X+1 X+7  0 2X+1 2X+5 X+5  1  1  1 X+4 2X+1 2X+3  5  4  3  1 2X+2 X+3 X+1  1  7  1  1 2X+6 X+4 2X+3  5 X+5  6  5 2X X+2 X+7 2X+8  1 2X+6  X 2X+4  1  1 2X+2  0  X 2X+8  1  1  X X+8 X+6 X+6 2X  4  1 X+1  1  1 2X+7  1 X+8  0
 0  0  1 2X+4 2X+1  3 X+8 X+5 2X+6  4 2X+2  4  2 2X X+6  1  7 2X+8  5  2  1 X+3  4 2X+6 X+7 2X+2 2X+5 2X  5 X+4 2X+7 2X+8  0  6 2X+1  0  X  8 X+1 2X+8 X+6 X+4  8  2 X+7 2X+4 X+3  7 2X  1 2X+2 X+5  1  3 X+8  6  4 X+5 X+3 2X+1  1 X+3  4 2X+6 X+1  X  X 2X+8 X+6 X+1  4 2X+8  5  1  2 X+2 X+1 X+6  7 2X+8 X+5 2X+7 X+8  6

generates a code of length 84 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 161.

Homogenous weight enumerator: w(x)=1x^0+396x^161+636x^162+1884x^163+1734x^164+1652x^165+2052x^166+1704x^167+1356x^168+1524x^169+1422x^170+968x^171+1296x^172+906x^173+446x^174+606x^175+420x^176+362x^177+240x^178+54x^179+6x^181+6x^182+2x^183+6x^184+4x^186

The gray image is a code over GF(3) with n=756, k=9 and d=483.
This code was found by Heurico 1.16 in 0.99 seconds.